### City of Santa Cruz Water Commission Workshop: Recycled Water February 6, 2017

# Agenda

- Study Background & Context
- Scope of Work for Recycled Water Study
- Current Alternatives Analysis
- Regulatory Framework and Treatment Technology

# **Project Background & Context**

- WSAC Strategy 2
  - Element 3 = Advanced Treated Recycled Water or Desalination
- Recycled Water Feasibility Planning Study Grant
- City-owned WWTF
- Potential for Partnerships
  - City PW
  - Soquel Creek Water District
  - Scotts Valley Water District
  - San Lorenzo Valley Water District

# Element 3: Timeline

|        |                                                            |                    | CY | 2016 |    |    | CY |    | CY 2018 |       |       |
|--------|------------------------------------------------------------|--------------------|----|------|----|----|----|----|---------|-------|-------|
|        |                                                            | Q1                 | Q2 | Q3   | Q4 | Q1 | Q2 | Q3 | Q4      | Q1/Q2 | Q3/Q4 |
| Elemer | nt 3 - Advanced Treated Recycled Water or Desalination     |                    |    |      |    | ~  |    |    |         |       |       |
|        | 3.1M Define Recycled Water project alternatives and status | of DPR regulations |    |      | 3  | .1 |    |    |         |       |       |
|        | Water Commission Recycled Water Workshop                   |                    |    |      |    | /• |    |    |         |       |       |
|        | Contract with Raftelis                                     |                    |    |      |    | •  |    |    |         |       |       |
|        | Contract with DUDEK                                        |                    |    |      |    | ٠  |    |    |         |       |       |
|        | Water Commission Receives Preliminary Results and          | Recommendations    |    |      |    |    | •  |    |         |       |       |
|        | Water Commission Receives Draft Report RWFPS               |                    |    |      |    |    | •  |    |         |       |       |
|        | Water Commission Recives Updated Report on Desal           | ination            |    |      |    |    |    | •  |         |       |       |
|        | Water Commission Engages in Element 3 Comparison           | Discussion         |    |      |    |    |    |    | •       |       |       |
|        | 3.2D Select preferred Element 3                            |                    |    |      |    |    |    |    | 3       | .2    |       |
|        | 3.3D Prelim design, CEQA (prepare Draft EIR), permits      |                    |    |      |    |    |    |    |         |       |       |
|        | 3.4M Complete Design , CEQA, permits, property acquisitor  | 1                  |    |      |    |    |    |    |         |       |       |
|        | 3.5W Complete construction/start up                        |                    |    |      |    |    |    |    |         |       |       |





## REGIONAL RECYCLED WATER FACILITIES PLANNING STUDY OVERVIEW

Presentation for City of Santa Cruz

Water Commission February 6 2017



Photo of San Lorenzo River mouth at the Santa Cruz Beach Boardwalk

## PRESENTATION TOPICS

- The Study
- Scope of Work
- Objectives
- Collaboration
- Outreach
- The Process
  - Project Components
  - Project Alternatives
    - Develop
    - Evaluate
    - Rank



- Recommended Project
- Next Steps

Loch Lomond Reservoir November 2014



## THE STUDY

- Cost: \$512,000
- Duration: 18 Months
- Top Consultants in the Nation
  - Prime: Kennedy/Jenks
  - Sub consultants:
    - Trussel Technologies
      - WWTF Facility/Supply Analysis, Treatment Technologies, QA/QC
    - Merrit Smith Consulting
      - Regulatory Strategy Support
    - Bob Raucher
      - Triple Bottom Line Analysis
    - GHD Inc.
      - CEQA/Environmental Compliance Support
    - Michael Welch, PhD.
      - Reservoir Augmentation

#### Kennedy/Jenks Consultants

#### **Engineers & Scientists**







## SCOPE OF WORK

| Task | Description                                       | % of<br>Budget |  |  |  |  |  |
|------|---------------------------------------------------|----------------|--|--|--|--|--|
| 1    | Project Management<br>QA/QC                       | 8%             |  |  |  |  |  |
| 2    | Background Information                            | 4%             |  |  |  |  |  |
| 3    | RW Market Analysis                                | 17%            |  |  |  |  |  |
| 4    | Treatment Evaluation /<br>Regulatory Requirements |                |  |  |  |  |  |
| 5    | Alternatives Analysis                             | 22%            |  |  |  |  |  |
| 6    | Stakeholder Involvement                           | 6%             |  |  |  |  |  |
| 7    | Recommended Project                               | 4%             |  |  |  |  |  |
| 8    | Financial Analysis                                | 2%             |  |  |  |  |  |
| 9    | Regional RWFPS Report                             | 14%            |  |  |  |  |  |
| 10   | Meetings and Workshops                            | 13%            |  |  |  |  |  |
| 11   | Injection Well Capacity and<br>Siting Study       | 5%             |  |  |  |  |  |

| Major Deliverables                                   |          |
|------------------------------------------------------|----------|
| Recycled Water Market Survey Maps                    |          |
| Tables / Graphs / Analysis                           |          |
| Meeting Materials & Participation                    |          |
|                                                      |          |
| Technical Memorandum                                 |          |
| Treatment Evaluation                                 |          |
| Purisima Basin Injection Well Capacity & Siting S    | tudy     |
| Santa Margarita Basin Injection Well Capacity & Siti | ng Study |
| Groundwater Replenishment                            |          |
| Surface Water Augmentation                           |          |
| Streamflow Augmentation                              |          |
| Direct Potable Reuse                                 |          |
| Regional Recycled Water Facilities Planning St       | udv      |

**Final Report** 

- Assess beneficial reuse of wastewater from a resource recovery perspective
- Identify a phased approach to reuse in Santa Cruz
- Identify potential impacts to Santa Cruz WWTF operations
- Meet or reduce the water supply gap as identified by the WSAC (1.2 BGY)
- Meet schedule of Water Supply Advisory Committee (WSAC) Element #3
- Evaluate local and regional recycled water projects
- Initiate plan for continued recycled water outreach and education
- Meet State Water Resource Control Board (SWRCB) grant requirements



- Assess beneficial reuse of wastewater from a resource recovery perspective
- Identify a phased approach to reuse in Santa Cruz
- Identify potential impacts to Santa Cruz WWTF operations
- Meet or reduce the water supply gap as identified by the WSAC (1.2 BGY)
- Meet schedule of Water Supply Advisory Committee (WSAC) Element #3
- Evaluate local and regional recycled water projects
- Initiate plan for continued recycled water outreach and education
- Meet State Water Resource Control Board (SWRCB) grant requirements





- Assess beneficial reuse of wastewater from a resource recovery perspective
- Identify a phased approach to reuse in Santa Cruz
- Identify potential impacts to Santa Cruz WWTF operations
- Meet or reduce the water supply gap as identified by the WSAC (1.2 BGY)
- Meet schedule of Water Supply Advisory Committee (WSAC) Element #3
- Evaluate local and regional recycled water projects
- Initiate plan for continued recycled water outreach and education
- Meet State Water Resource Control Board (SWRCB) grant requirements



- Assess beneficial reuse of wastewater from a resource recovery perspective
- Identify a phased approach to reuse in Santa Cruz
- Identify potential impacts to Santa Cruz WWTF operations
- Meet or reduce the water supply gap as identified by the WSAC (1.2 BGY)
- Meet schedule of Water Supply Advisory Committee (WSAC) Element #3
- Evaluate local and regional recycled water projects
- Initiate plan for continued recycled water outreach and education
- Meet State Water Resource Control Board (SWRCB) grant requirements



- Assess beneficial reuse of wastewater from a resource recovery perspective
- Identify a phased approach to reuse in Santa Cruz
- Identify potential impacts to Santa Cruz WWTF operations
- Meet or reduce the water supply gap as identified by the WSAC (1.2 BGY)
- Meet schedule of Water Supply Advisory Committee (WSAC) Element #3
- Evaluate local and regional recycled water projects
- Initiate plan for continued recycled water outreach and education
- Meet State Water Resource Control Board (SWRCB) grant requirements





- Assess beneficial reuse of wastewater from a resource recovery perspective
- Identify a phased approach to reuse in Santa Cruz
- Identify potential impacts to Santa Cruz WWTF operations
- Meet or reduce the water supply gap as identified by the WSAC (1.2 BGY)
- Meet schedule of Water Supply Advisory Committee (WSAC) Element #3
- Evaluate local and regional recycled water projects
- Initiate plan for continued recycled water outreach and education
- Meet State Water Resource Control Board (SWRCB) grant requirements



## COLLABORATION



## OUTREACH

- Unified Message
   Pure Water
- Tough Questions
   In-House First
- Build Acceptance and Trust
  - Employees, Elected Officials, Local Groups, Public
  - 1-on-1 Meetings, No 'Stupid' Questions
- 🗆 Media
  - Understand their needs
- Demonstration Project
  - Seeing is Believing... Tasting is Believing







## THE PROCESS





# PROJECT COMPONENTS



## **PROJECT ALTERNATIVES**



**Guidelines are utilized to achieve Objectives** 

## **DEVELOP ALTERNATIVES**

#### WORKSHOPS AND WEBINARS

| Date   | Meeting                          | Obiective / Goal                                                                                                                                               |
|--------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mar-16 | Kick-Off                         | Define Study Objectives, Present Scope, Schedule and Budget                                                                                                    |
| Jun-16 | Alternatives Workshop            | Present approach to identify preliminary alternatives, obtain input and select alternatives for further study, Discuss WWTF siting options                     |
| Aug-16 | Screening Webinar                | Present approach for screening alternatives, discuss screening categories, criteria, guidelines for scoring and weighting                                      |
| Oct-16 | Alternative Webinar -<br>Part I  | Presentation of 1st set of Alternatives<br>Centralized and Decentralized Non-Potable Reuse                                                                     |
| Dec-16 | Alternative Webinar -<br>Part II | <ul> <li>Presentation of 2nd set of Alternatives</li> <li>Surface Water Augmentation</li> <li>Streamflow Augmentation</li> <li>Direct Potable Reuse</li> </ul> |



Alternatives Workshop 6/28/16



## **EVALUATE ALTERNATIVES**



## **EVALUATE ALTERNATIVES**



Qualitative Screening Criteria are used to guide scoring

**LEGEND:** 

Quantitative results from Alternatives Evaluation are used to inform scoring



## RANK ALTERNATIVES

Utilize qualitative / quantitative data to score then rank Alternatives against each other

Input scores into a matrix to determine top candidates

Stakeholders

Perform Sensitivity Analysis

| Categories                                                                      |         |                                                                                                                                                                           | ENGINEERING &<br>OPERATIONAL<br>CONSIDERATIONS | ECONOMIC | EVMISONNERT NL | SOCIAL | Total Score | ENGINEERING &        | CONSDERATIONS | ECONOMIC       | ERMIRONMERT NL.  | SOCIAL. | Total Score |   | Agency Weighted<br>Objective Score | Maximize Water<br>Supply | Mod Financially<br>Visitie | Msolmize<br>Environmental<br>Benefits | Average Score<br>(sensitivity analysis<br>sconarios) |   | Agency Weighted<br>Otherdive Score | Maximize Water<br>Supply | Most Financially<br>Visible | Madmize<br>Environmentel<br>Bennefts | Average Ranking<br>(son silvity an alysis<br>soon artos) |  |
|---------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------|----------------|--------|-------------|----------------------|---------------|----------------|------------------|---------|-------------|---|------------------------------------|--------------------------|----------------------------|---------------------------------------|------------------------------------------------------|---|------------------------------------|--------------------------|-----------------------------|--------------------------------------|----------------------------------------------------------|--|
| Alternative                                                                     | Sub-Alt | I Description                                                                                                                                                             |                                                |          |                |        |             | AVE WEIGHTED RANKING |               |                |                  |         |             |   | SENSITIVITY SCORING                |                          |                            |                                       |                                                      |   | SENSITIVITY RENKING                |                          |                             |                                      |                                                          |  |
| Alternative 1 - Centralized                                                     | 1a      | Santa Cruz PWD Phase 2 Project                                                                                                                                            | 36.8                                           | 23.3     | 12.2           | 15.6   | 87.9        | 1                    |               | 1              | 1                | 1       | 2           |   | 153.8                              | 216.0                    | 159.4                      | 112.5                                 | 160.4                                                |   | 2                                  | 1                        | - 4                         | 2                                    | 2                                                        |  |
| Non-Potable Reuse                                                               | 1b      | Maximize tertiary treatment at the SC WWTF                                                                                                                                | 36.6                                           | 21.2     | 12.2           | 15.1   | 85.1        | 1                    |               | 2              | 1                | 2       | 4           |   | 148.9                              | 213.3                    | 148.6                      | 110.6                                 | 155.4                                                |   | - 4                                | 2                        | 5                           | 4                                    | 4                                                        |  |
| Alternative 2 – Decentralized<br>Non-Potable Reuse                              | 2       | UC Santa Cruz                                                                                                                                                             | 26.7                                           | 18.0     | 12.2           | 13.0   | 69.9        | 1                    |               | 6              | 1                | 6       | 9           |   | 122.3                              | 161.1                    | 124.5                      | 99.9                                  | 126.9                                                |   | 9                                  | 11                       | 10                          | 8                                    | 10                                                       |  |
|                                                                                 | 3a      | Send secondary offluent from SCWWTF to SqCWD for injection in SqCWD basin<br>(serve NPR users along the way)                                                              | 30.5                                           | 26.5     | 12.2           | 15.1   | 84.3        | 1                    |               | 2              | 1                | 2       | 5           |   | 147.5                              | 187.1                    | 170.3                      | 110.0                                 | 153.7                                                |   | 5                                  | 7                        | 3                           | 5                                    | 5                                                        |  |
| Alternative 3 - Santa Cruz                                                      | 3b      | Send tertiary effluent from SCWWTF to SqCWD (serve NPR users along the way)                                                                                               | 34.5                                           | 26.5     | 12.2           | 15.1   | 88.2        | 1                    |               | 2              | 1                | 2       | 1           |   | 154.4                              | 206.5                    | 173.1                      | 112.8                                 | 161.7                                                |   | 1                                  | 5                        | 1                           | 1                                    | 2                                                        |  |
| Participation in SqCWD led<br>Groundwater Recharge Reuse<br>(GWRR) Project      | 34      | Send additional secondary effluent from SCWWTF to SqCWD AWTF and deliver<br>purified water from SqCWD AWTF o recharge Santa Cruz GWRR                                     | 36.2                                           | 21.2     | 10.8           | \$2.0  | 80.2        | ,                    | _             | ,              | ,                | ,       |             |   | 140.4                              | 208.2                    | 145.2                      | 101.5                                 | 148.8                                                |   |                                    | ,                        |                             |                                      | 5                                                        |  |
|                                                                                 | 3d      | Send advanced treated RW from SCWWTF to SqCWD, (serve NPR users along the<br>work)                                                                                        | 31.8                                           | 26.5     | 12.2           | PI     | A           | ^F                   | Н             | $(\mathbf{r})$ | ΓD               | FF      | <u></u> γγ  | C | 149.7                              | RF                       | ς/                         | RA                                    | N                                                    | Κ | IN                                 | G                        |                             | 3                                    | 4                                                        |  |
|                                                                                 | 3e      | Send advanced treated RW from SCWWTF to SqCWD, (GWRR and NPR along the<br>way)                                                                                            | 36.2                                           | 21.2     | 10.8           | 12.0   | 80.2        | 7                    |               | 7              | 7                | 7       | 6           |   | 140.4                              | 208.2                    | 145.2                      | 101.5                                 | 148.8                                                |   | 6                                  | 3                        |                             |                                      | 5                                                        |  |
|                                                                                 | 4a      | Santa Cruz GWRR with ANTF at SC WWTF<br>(DO NOT serve NPR users along the way)                                                                                            | 31.5                                           | 19.1     | 10.8           | 11.5   | 72.9        | 7                    | F             | $\odot$        | R <sup>,</sup> E | EX.     | AΛ          | Λ | PL                                 | 183.4                    | ٥N                         | 4.4                                   | 134.7                                                |   | 8                                  | 8                        | 8                           | 9                                    | 8                                                        |  |
| Alternative 4 – Santa Cruz<br>GWRR Project                                      | 4b      | Santa Cruz GWRR with<br>AWT F of secondary effluent at off-site location (DO NOT serve NPR users along the<br>work                                                        | 29-2                                           | 19.1     | 9.5            | 11.5   | 69.2        |                      | •             | -              |                  | -,-     | 10          | - |                                    | 170.9                    | 128.7                      | 66.1                                  | 127.2                                                |   | 10                                 |                          |                             | 10                                   | 10                                                       |  |
|                                                                                 | 4c      | Santa Chuz GWRR with<br>MBR + AWTF at DAPorath PS<br>(DO NOT serve NPR users along the way)                                                                               | 24.9                                           | 15.9     | 8.1            | 11.5   | 60.4        | r                    | 1             | 9              | 11               | 9       | 12          |   | 105.6                              | 146.7                    | 109.0                      | 76.3                                  | 109.4                                                |   | 12                                 | 13                       | 13                          | п                                    | 12                                                       |  |
| Alternative 5 – Surface Water<br>Augmentation (SWA) in Loch<br>Lomond Reservoir | 5       | Advanced treatment of Santa Cruz effluent for bending in Loch Lomond Reservair<br>(DD NDT serve NPR users along the way)                                                  | 26.8                                           | 17.0     | 6.8            | 6.3    | 56.8        | 13                   | 2             | 15             | 12               | 15      | 13          |   | 99.4                               | 152.4                    | 111.2                      | 68.1                                  | 107.8                                                |   | 13                                 | 12                       | 12                          | 13                                   | 13                                                       |  |
| Alternative 6 – Streamflow –<br>Augmentation                                    | 64      | AWTF of secondaryefluent with direct discharge to the San Lorenzo River bbw Fellon<br>and Tait<br>(DO NOT serve NPR users along the way)                                  | 19.5                                           | 10.6     | 4.7            | 7.3    | 42.0        | 1                    | 4             | 13             | 14               | 13      | 14          |   | 73.6                               | 111.2                    | 73.9                       | 49.3                                  | 77.0                                                 |   | 14                                 | 14                       | 14                          | 14                                   | 14                                                       |  |
|                                                                                 | 6b      | AWTF of secondary effluent with indirect disc harge to the San Lorenzo River dis of<br>Tail Street Diversion at Tail Well Field<br>(DD NOT serve NPR users along the way) | 19.5                                           | 10.6     | 4.7            | 7.3    | 42.0        | 1                    | 4             | 13             | 14               | 13      | 14          |   | 73.6                               | 111.2                    | 73.9                       | 49.3                                  | 77.0                                                 |   | 14                                 | 14                       | 14                          | 14                                   | 14                                                       |  |
| Alternative 7 – Direct Potable<br>Reuse                                         | 7       | Raw Water Blending at Graham Hill WTP (via Coast PS)                                                                                                                      | 29.5                                           | 17.0     | 6.8            | 11.0   | 64.3        | 1                    | 2             | 12             | 12               | 12      | n           |   | 112.5                              | 168.9                    | 116.4                      | 73.3                                  | 117.8                                                |   | 11                                 | 10                       | п                           | 12                                   | n                                                        |  |

**Example Scoring Matrix** 



## **RECOMMENDED PROJECT**

The primary objective of the Study is to recommend a project that is "safe, adequate, reliable, affordable and environmentally sustainable."

Ranking and scoring will be inputs into the decision of the Recommend Project

The Recommended Project will be determined by stakeholders

## NEXT STEPS

#### THE STUDY

| Date            | Meeting                            | Objective / Goal                                                                                                                                                                                                                           |
|-----------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Feb/Mar -<br>17 | Alternative Webinar -<br>Part III  | Presentation of 3rd set of Alternatives<br><u>Groundwater Recharge Reuse (GRR) through Indirect Potable Reuse</u><br>Soquel Creek Water District Led<br>Santa Cruz Water Department Led<br>Regional (Scotts Valley, Santa Cruz and Soquel) |
| Apr-17          | Scoring & Ranking<br>Workshop      | Discuss Preliminary Scoring and Ranking<br>Identify Recommended Alternative (or Phased Projects) for further<br>development                                                                                                                |
| Jun - 17        | Present Recommended<br>Alternative | Present Recommended Alternative (or Phased Projects)                                                                                                                                                                                       |



## NEXT STEPS

#### WATER SUPPLY ADVISORY COMMITTEE RECOMMENDATIONS

- Depending on the Recommended Project additional studies will be required;
  - Modeling
  - Detailed Design Considerations and Constraints
- An Element 3 project <u>may</u>\* need to provide a new supply by 2024
  - \*Depending on status of WSAC Strategy 1
- Planning needs to occur as if a Element 3 project <u>will</u> need to provide a new supply by 2024







#### Our Water, Our Future

#### City of Santa Cruz Water Department

David Kehn Assistant Engineer (831) 420-5217 dakehn@cityofsantacruz.com





## City of Santa Cruz Recycled Water Facilities Planning Study Water Commission Workshop Feb 6, 2017 Dawn Taffler P.E., LEED

## **Today's Presentation**

- High-level overview of alternatives; which are at varying stages of evaluation.
- Costs and facility sizes are not presented at this time; but will be an integral part of the scoring and ranking process.
- All pipeline alignments and facility locations are assumed to be preliminary; these would be further evaluated and refined in future studies as part of environmental review and design process.

## **Alternatives for Further Evaluation**

- 8 Alternatives
- 3 Broad Categories
  - Non-Potable Reuse (NPR)
  - Indirect Potable Reuse (IPR)
  - Direct Potable Reuse (DPR)
- Increasing levels of treatment barriers



### Not to Be Confused with

#### De Facto Reuse





Credit: Rice and Westerhoff, Environ. Sci. Technol., 2015, 49 (2), pp 982–989

**Kennedy/Jenks Consultants** 

## **Alternatives for Further Evaluation**

- Alternative 1 Centralized Non-Potable Reuse
  - Alternative 2 Decentralized Non-Potable Reuse
  - Alternative 3 Santa Cruz Participation in SqCWD-led GRR Project
- Alternative 4 Santa Cruz GRR Project

**NPR** 

IPR

DPR

IPR

- Alternative 5 Surface Water Augmentation (SWA) in Loch Lomond Reservoir
- Alternative 6 Streamflow Augmentation
- Alternative 7 Direct Potable Reuse
  - Alternative 8 Regional GRR Project

#### Alt 1 - Centralized Non-Potable Reuse Alt 1a – Santa Cruz PWD Phase 2 Project

- Description: Title 22 upgrades to the existing disinfected reclaimed water system at the Santa Cruz WWTF
- Source: Santa Cruz WWTF
- **Project Size:** 0.25 MGD tertiary RW demand
- Uses: In-plant uses, truck filling and La Barranca Park
- Major Facilities: Chlorine Contact Basin #2, Interconnecting Piping, Chemical dosing System, Control System, Other Miscellaneous Components – including pipeline to La Barranca Park and truck filling station

### Alt 1a - Santa Cruz PWD Phase 2 Project





25,000 gal New CCB25,000 gal Existing CCBUp to 142,000 gal Storage

CCB = Chlorine Contact Basin

Kennedy/Jenks Consultants

## Pilot Plant AWPF at the SCWWTF

- Collaboration btw PWD and SqCWD
- Objectives (per RFP)
  - Introduce potable recycled water to the community,
  - Educate the public on the purification process, and
  - Develop design criteria for SqCWD's future full-scale
- Nexus with WSAC Element 3, which included
  - As-needed demonstration testing
  - Continued public outreach and education

## Pilot Plant AWPF at the SCWWTF

- Potential Nexus with City Water Department Activities
  - Making the pilot more suitable for tours and a longerterm facility
  - Additional water quality testing (constituents, frequency, duration), equipment and modeling consistent with typical drinking water quality parameters
  - Opportunity to evaluate multiple treatment trains
  - Verification if/when we apply for log-removal credit
  - Operator/engineering experience with the advanced treatment train process(es)
### Alt 1 - Centralized Non-Potable Reuse Alt 1b – Maximize Tertiary Treatment

- Description: New tertiary treatment at Santa Cruz WWTF (or off-site) to meet identified non-potable demands within the City's service area.
- Source: Santa Cruz WWTF
- **Project Size:** ~0.7 mgd tertiary RW demand
- Uses: Irrigation, in-plant uses, bulk water stations, existing dual-plumbed buildings and cooling towers. Approx 50 customer sites in City.
- **Major Facilities:** tertiary treatment facility, conveyance and distribution pipelines, pump stations, storage

### Alt 1b - Maximize Tertiary Treatment & Alt 2 – Decentralized Non Potable Reuse



**Kennedy/Jenks Consultants** 

# Alt 3 - Santa Cruz Participation in a SqCWD-led GRRP

- Description: partner with SqCWD to meet regional demands and share facilities.
- Source: Santa Cruz WWTF
- **Project Size:** assume 1.3 mgd of groundwater recharge in SqCWD, demand in Santa Cruz varies by sub-alternative
- **Uses:** Groundwater recharge and irrigation
- Major Facilities: treatment facility, conveyance and distribution pipelines, pump stations, injection wells, brine discharge via connection to existing ocean outfall or parallel brine line.

# Alt 3 - Santa Cruz Participation in a SqCWD-led GRRP

Draft SqCWD RWFPS looked at 2 Advanced Water Treatment Facility (AWTF) sites to utilize Santa Cruz WWTF effluent



# Alt 3 - Santa Cruz Participation in a SqCWD-led GWRR

#### • AWPF @ SqCWD Headquarters (3 Sub-alternatives)

 Alt 3a - Send secondary effluent from SCWWTF to SqCWD for injection in SqCWD basin

✓ \*Baseline – no use in Santa Cruz

Alt 3b - Send tertiary effluent from SCWWTF to SqCWD

✓ Serve tertiary RW to NPR users along the way

 Alt 3c - Send additional secondary effluent from SCWWTF to SqCWD AWTF and deliver purified water from SqCWD AWTF

✓ Recharge advanced treated RW in Santa Cruz GW basin

#### AWPF @ Santa Cruz WWTF (2 Sub-alternatives)

- Alt 3d Send advanced treated RW from SCWWTF to SqCWD
  - ✓ Serve advanced treated RW to NPR users along the way
- Alt 3e Send advanced treated RW from SCWWTF to SqCWD,
  - ✓ Recharge advanced treated RW in Santa Cruz GW Basin
  - ✓ Serve advanced treated RW to NPR along the way

Injection capacity and

siting study underway

Injection capacity and

siting study underway

# Alt 3 - Santa Cruz Participation in a SqCWD-led GWRR

|                              | Alt | Delivery<br>to SqCWD   | Use in Santa Cruz                     | Major Facilities in Santa Cruz                                                                                                      |
|------------------------------|-----|------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| AWTF @ SqCWD<br>Headquarters | 3a  | 1.7 mgd<br>secondary   | None                                  | Pump Station (PS) at SCWWTF, pipeline to SqCWD                                                                                      |
|                              | 3b  | 1.7 mgd<br>tertiary    | 0.12 mgd NPR<br>(~30 sites)           | Tertiary Treatment and PS at SCWWTF, pipeline to SqCWD, distribution pipelines to customer sites                                    |
|                              | 3с  | > 1.7 mgd<br>secondary | ~TBD* mgd for<br>GRR                  | PS at SCWWTF, pipeline to SqCWD, pipeline<br>from SqCWD to GW injection sites, GW injection<br>wells                                |
| AWTF @<br>SCWWTF             | 3d  | 1.3 mgd<br>purified    | 0.12 mgd NPR                          | AWTF and PS at SCWWTF, pipeline to SqCWD, distribution pipelines to customer sites                                                  |
|                              | 3e  | 1.3 mgd<br>purified    | 0.12 mgd NPR<br>+ TBD* mgd for<br>GRR | AWTF and PS at SCWWTF, pipeline to SqCWD,<br>distribution pipelines to customer sites and GW<br>injection sites, GW injection wells |
|                              |     |                        | Other Considerations                  |                                                                                                                                     |

\*Injection capacity and siting study underway to estimate potential for GRR in Beltz Wellfield

#### Other Considerations

- Beneficial reuse of ww to maintain GW levels
- Coordination required between multiple agencies
- Interagency infrastructure challenges (ownership, ops, construction, etc)
- Potential for cost-sharing and pursuing funding as a region
- Future studies needed

## Alt 3 - Santa Cruz Participation in a SqCWD-led GWRR



### Alt 4 - Santa Cruz GRRP Alt 4a - AWTF at SC WWTF

- Description: independent GRRP in Santa Cruz with an, Advance Water Treatment Facility (AWTF), at the SC WWTF (or a nearby location)
- Source: Santa Cruz WWTF
- **Project Size:** Groundwater recharge (TBD mgd) based on injection capacity and siting study underway
- **Uses:** Groundwater recharge and irrigation
- Major Facilities: AWTF, conveyance and distribution pipelines, pump stations, injection wells, brine discharge via connection to existing ocean outfall

# Alt 4b – MBR + AWTF

- Description: independent GRRP in Santa Cruz with a satellite treatment facility at the DA Porath Pump Station
- Source: Santa Cruz County wastewater collection system
- Project Size: Groundwater recharge (TBD\* mgd) based on injection capacity and siting study underway
- Uses: Groundwater recharge only
- Major Facilities: Membrane Bioreactor (MBR) for tertiary treatment, AWTF, conveyance and distribution pipelines, pump stations, injection wells, brine discharge via sewer or connection to existing ocean outfall

\*Injection capacity and siting study underway to estimate potential for GRR in Beltz Wellfield

## Alt 4 - Santa Cruz GRRP



#### **Other Considerations**

- Maximizes beneficial reuse of wastewater in summer
- Maintaining GW levels
- Siting issues for MBR
  - Operational complexity and energy for treatment
- Public acceptance uncertain
- Additional studies needed to confirm assumptions

**Kennedy/Jenks Consultants** 

# <u>Alt 5 – Surface Water Augmentation</u>

- **Description:** Advanced treatment of Santa Cruz effluent for blending and storage in Loch Lomond, to be conveyed to the GHWTP and enter the City's potable water distribution system.
- Source: Santa Cruz WWTF
- **Project Size:** 3.2 mgd AWTF capacity
- Uses: Advanced treated water to augment Loch Lomond Reservoir when available capacity (1.6 to 3.2 mgd annual average)
- Other Demands: Phase 2 tertiary demand (0.25 mgd), secondary deliveries to SqCWD (1.7 mgd)
- Major Facilities: AWTF at SCWWTF (or at a nearby location), conveyance pipelines to Loch Lomond, pump station, discharge facility at reservoir, brine discharge via connection to existing ocean outfall

# Alt 5 - Surface Water Augmentation



### **Other Considerations**

- Maximizes beneficial reuse of wastewater in summer
- Environmental benefits to maintaining lake levels
- Challenging but viable regulatory requirements
- Operational complexity for treatment and reservoir operations
- Significant energy for treatment and conveyance
- Public acceptance uncertain
- Additional studies needed to confirm assumptions

# Alt 6 – Streamflow Augmentation

- Description: Augment San Lorenzo River flows to meet in stream flow requirements and maximize water supply.
- Source: Santa Cruz WWTF
- Project Size: 3.2 mgd AWTF capacity
- Uses: Advanced treated water to augment the San Lorenzo River in summer months only (ave annual ~1.6 mgd)
- Other Demands: Phase 2 tertiary demand (0.25 mgd), secondary deliveries to SqCWD (1.7 mgd)
- Major Facilities: AWTF at SCWWTF (or at a nearby location), conveyance pipelines to San Lorenzo River d/s of Tait Street Diversion, pump station, discharge facility, brine discharge via connection to existing ocean outfall

### Alt 6 - Streamflow Augmentation Direct Discharge to San Lorenzo River



#### **Other Considerations**

- Potential to maximize beneficial reuse of wastewater in summer
- Benefits to providing fishery flows
- Regulatory viability is highly uncertain (TMDL/WQOs)
- Operational complexity for treatment
- Significant energy for treatment
- Public acceptance uncertain
- Proximity of point of discharge to Tait Street Diversion

### Alt 7 – Direct Potable Reuse Raw Water Blending at Graham Hill WTP

- Description: Advanced treated water would be blended with raw water coming from city's other flowing sources for further treatment at the GHWTP prior to distribution as finished water.
- Source: Santa Cruz WWTF
- **Project Size:** 3.2 mgd AWTF capacity
- Uses: Advanced treated water to augment potable water supplies (3.2 mgd annual average)
- Other Demands: Phase 2 tertiary demand (0.25 mgd), secondary deliveries to SqCWD (1.7 mgd)
- Major Facilities: AWTF at SCWWTF (or at a nearby location), conveyance pipelines and connection to Coast Pump Station, pump station, brine discharge via connection to existing ocean outfall

### Alt 7 – Direct Potable Reuse Raw Water Blending at Graham Hill WTP



#### **Other Considerations**

- Maximize beneficial reuse of wastewater year-round
- No DPR projects currently exist in California
- Existing regulations have not been developed
- Operational complexity for treatment
- Potential Impact on GHWTP source water issues (i.e. high turbidity, high TOC, DBPs, solids, etc)
- Significant energy for treatment
- Public acceptance uncertain
- Synergies between GHWTP investments and AWPF will impact siting and blending.

# <u>Alt 8 – Regional GRR Project</u>

- Description: Regional AWTF to produce purified water for groundwater replenishment in the Santa Margarita Groundwater Basin. Utilize existing or new production wells to serve Santa Cruz, SVWD, SLVWD and SqCWD.
- **Source:** Santa Cruz WWTF + Scotts Valley WRF
- Project Size: Groundwater recharge (TBD\* mgd) based on injection capacity and siting study underway
- **Uses:** Groundwater recharge only
- Major Facilities: AWTF, conveyance and distribution pipelines, pump stations, injection wells, production wells, brine discharge via the ocean outfall.



# <u>Alt 8 – Regional GRR Project</u>



#### **Other Considerations**

- Maximizes beneficial reuse of wastewater in the Region
- Operational complexity for treatment
- Significant energy for treatment and conveyance
- Level of cooperation and coordination required between multiple agencies
- Interagency infrastructure challenges (ownership, operations, construction, etc)
- Potential for cost-sharing and pursuing funding as a region
- Water rights and transfer agreements
- Future studies needed

## **Next Steps**

### **2017 Activities**

- Feb Alternative Webinars Part 3 (GRR Beltz)
- Mar Alternative Webinars Part 4 (Regional Alts)
- Apr Scoring and Ranking Workshop
- Jun Recommended Facilities Plan Workshop
- Jul Draft RWFPS for SWRCB Review
- Sept Final RWFPS
- Dec SWRCB Grant Deadline

QUESTIONS

Kennedy/Jenks Consultants

# Water Reuse: Types, Treatment, and Regulations

Brian Pecson, Ph.D., P.E. Trussell Technologies

Water Commission Workshop February 6, 2017



# The Reuse Landscape is Changing

#### **Non-Potable Reuse**

#### **Groundwater Recharge**



Surface Water Augmentation



#### **Types of Groundwater Recharge: Surface Spreading Potable** Water Tertiary Groundwater Chlorination Consumers Treatment Aquifer Reuse Groundwater Recharge: Subsurface/Direct Injection Full Water Advanced Groundwater Chlorination Consumers Treatment/ Aquifer



**Groundwater Recharge: Surface Spreading** Water Tertiary Groundwater Chlorination Consumers Treatment Aquifer Groundwater Recharge: Subsurface/Direct Injection Full Water Advanced Groundwater Chlorination Consumers Treatment/ Aquifer **Surface Water Augmentation** Water Surface Water Advanced -Reservoir Consumers Treatment Plant Treatment























# Public Health Protection

DPR must not harm public health!!!





# Public Health Protection

### DPR must not harm public health!!!

<u>Pathogens</u>











Carbamazepine

PFOS N O

NDMA



# Pathogens vs. Chemicals





• Pathogen control: the most important aspect


#### Pathogens vs. Chemicals





- Pathogen control: the most important aspect
- Why is this the case?

#### Pathogens vs. Chemicals





• Pathogen control: the most important aspect



#### Pathogens vs. Chemicals





• Pathogen control: the most important aspect





### **GWR Pathogen Requirements**



Virus: 12-log removal à 99.9999999999%



*Giardia*: 10-log removal à 99.9999999%



*Crypto*: 10-log removal à 99.9999999%

Also referred to as:

- Log Removal Value (LRV) for Virus/Giardia/Crypto (V/G/C)
- For example 12/10/10 or >13/11/11

#### **Groundwater Recharge**

#### Groundwater Recharge: Surface Spreading



- Treatment: Tertiary filtration + disinfection
- Retention time: typically 6+ months



- Treatment: Full Advanced Treatment (MF, RO, UV/AOP)
- Retention time: as low as 2 months

## **Full Advanced Treatment Train**



| 17β-Estradiol |   |  |
|---------------|---|--|
| Carbamazepine | 9 |  |
| NDMA          |   |  |
| 1,4-dioxane   |   |  |
| Crypto        |   |  |
| Giardia       |   |  |
| s             |   |  |
| ria           |   |  |
|               |   |  |
|               |   |  |
|               |   |  |
|               |   |  |



#### **Surface Water Augmentation**

• Draft regulations to be released in early 2017...

| Advanced<br>Treatment + Reservoir + Surface Water<br>Treatment Plant + Consumers |                                                                                           |                                                                  |  |  |  |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|
| <b>Retention Time</b>                                                            | Dilution                                                                                  | Treatment                                                        |  |  |  |
| $(\mathbf{V}/\mathbf{Q})$                                                        |                                                                                           |                                                                  |  |  |  |
| Originally 6+<br>months, but as low<br>as 2 months                               | Impacts level of<br>required treatment                                                    | Includes both AWTF<br>(with full advanced<br>treatment) and DWTP |  |  |  |
| Based on monthly<br>volume of aquifer<br>(V) and monthly<br>flow out (Q)         | <ul> <li>100-fold dilution,<br/>or</li> <li>10-fold with +1-<br/>log treatment</li> </ul> | <ul> <li>12/10/10 for V/G/C<br/>or</li> <li>13/11/11</li> </ul>  |  |  |  |

# First two SWA Projects both Pursuing V/Q < 6 months



#### **Direct Potable Reuse**

#### Source Water Augmentation with Reservoir



### Why not stick with Indirect Potable Reuse?



#### DPR has many benefits!



#### California's Big Question



Is it <u>feasible</u> to do potable reuse without an environmental buffer (DPR)?

Division of Drinking Water (DDW)

#### California's Big Question



Is it <u>feasible</u> to do potable reuse without an environmental buffer (DPR)?

Division of Drinking Water (DDW)



#### California's Big Question



Is it <u>feasible</u> to do potable reuse without an environmental buffer (DPR)?

Division of Drinking Water (DDW)





#### **DPR** Perspectives

• CA State Expert Panel concluded it is feasible to create uniform regulations for DPR



Evaluation of the Feasibility of Developing Uniform Water Recycling Criteria for Direct Potable Reuse

California State Water Resources Control Board



#### **DPR Perspectives**

- CA State Expert Panel concluded it is feasible to create uniform regulations for DPR
- DPR can provide public health protection as good or better than conventional drinking water supplies
- Design DPR with strong failure prevention features
  - High reliance on treatment and monitoring
  - Reduces reliance on failure response















- Long GWR history; first projects pursuing SWA
- Newer forms require rebalancing of system elements (treatment, monitoring, failure response)
- DPR will move forward but slowly and on a phased approach

ource Water Augmentation

Flange-to-Flange DPR

Surface Water Augmentation

- Additional needs for DPR
  - Further research
  - Better understanding of public health protection



#### What's Important?









#### Multiple Panels Have Evaluated CECs

- California State Water Resources Control Board
- Australian Water Recycling Guidelines
- NWRI Expert Panel for WateReuse 11-02
- ...and the industry continues to study CECs

| NATIONAL WATER QUALITY MANAGEMENT STRATER National                                                                                                             | W Research Institute       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| AUSTRALIAN GUIDELINES<br>FOR WATER RECYCLING:<br>MANAGING HEALTH AND<br>ENVIRONMENTAL RISKS<br>(PHASE 2)<br>AUGMENTATION OF DRINKING<br>WATER SUPPLIES<br>2008 | dent Advisory Panel Report |

#### List of CECs in WRRF 11-02

Acesulfame K Diclofenac Meprobamate Simazine Atenolol Diphenhydramine Naproxen Sucralose Ditiazem Norgestrol Sulfamethoxazole Atrazine Benzophenone Estrone Perfluorobutyric acid (PFBA) Benzotriazole Fluoxetine TCEP Perfluorobutane sulfonate (PFBS) Tris(1-chloro-2-propyl) phosphate (TCPP) Bisphenol A Gemfibrozil PFOA Testosterone Caffeine Hydrocortisone PFOS Ibuprofen Triclocarban Carbamazepine Perfluorohexanoic acid (PFHxA) Triclosan Clofibric Prednisone Acid Iohexol Trimethoprim DEET Iopamidol Primidone Dexamethasone lopromide Propylparaben



#### **CECs that were ubiquitous**

Acesulfame K Diclofenac Meprobamate Simazine Diphenhydramine Naproxen Sucralose Atenolol Ditiazem Norgestrol Sulfamethoxazole Atrazine Benzophenone Estrone Perfluorobutyric acid (PFBA) Benzotriazole Fluoxetine TCEP Perfluorobutane sulfonate (PFBS) Tris(1-chloro-2-propyl) phosphate (TCPP) Bisphenol A Gemfibrozil PFOA Testosterone Caffeine Hydrocortisone PFOS Triclocarban Carbamazepine Ibuprofen Perfluorohexanoic acid (PFHxA) Triclosan Clofibric Acid Iohexol Prednisone Trimethoprim DFFT lopamidol Primidone Dexamethasone Iopromide Propylparaben



#### **CECs that were ubiquitous (or nearly)**

Diclofenac Meprobamate Acesulfame K Simazine Diphenhydramine Naproxen Sucralose Atenolol Ditiazem Norgestrol Sulfamethoxazole Atrazine Benzophenone Estrone Perfluorobutyric acid (PFBA) Benzotriazole Fluoxetine TCEP Perfluorobutane sulfonate (PFBS) Tris(1-chloro-2-propyl) phosphate (TCPP) Bisphenol A Gemfibrozil **PFOA** Testosterone Caffeine Hydrocortisone **PFOS** Triclocarban Carbamazepine Ibuprofen Perfluorohexanoic acid (PFHxA) Triclosan Clofibric Iohexol Prednisone Trimethoprim Acid DEET Iopamidol Primidone Dexamethasone Iopromide Propylparaben



#### **CECs selected by NWRI panel**

Acesulfame K Diclofenac Meprobamate Simazine Atenolol Diphenhydramine Naproxen Sucralose Benzophenone **Estrone** Perfluorobutyric acid (PFBA) TCEP Benzotriazole Fluoxetine phosphate (TCPP) Bisphenol A Gemfibrozil PFOA Testosterone Caffeine Hydrocortisone PFOS Triclocarban Carbamazepine Ibuprofen Perfluorohexanoic acid (PFHxA) Triclosan Clofibric DEET lopamidol **Primidone** Dexamethasone



### Criteria met in high quality 2ry effluents

| Constituent   | NWRI<br>Criterion | SJCWRP | El Paso | UOSA   | SD<br>AWPF | OCSD/<br>GWRS |
|---------------|-------------------|--------|---------|--------|------------|---------------|
| Atenolol      | 4,000             | 63     | 110     | 130    | 130        | 555           |
| Carbamazepine | 10,000            | 192    | 328     | 185    | 190        | 263           |
| DEET          | 200,000           | 53     | 33      | 51     | 130        | 528           |
| Estrone       | 320               | NDL    | < 36    | < 46   | < 4        | 41            |
| Mebrobamate   | 200,000           | 351    | 174     | 115    | 125        | 401           |
| PFOA          | 400               | 11     | 11.5    | 24     | NM         | NM            |
| PFOS          | 200               | < 14   | NDL     | < 13   | NM         | NM            |
| Primidone     | 10,000            | 166    | 121     | 148    | 91         | 100           |
| Sucralose     | 150,000,000       | 25,450 | 35,500  | 34.950 | 41,000     | NM            |
| TCEP          | 5,000             | NDL    | 406     | 335    | 375        | 338           |
| Triclosan     | 2,100,000         | 89     | NDL     | 27     | 64         | 324           |

## The NRC looked at the margin of safety (MOS) for 24 chemicals.


# Of these 13 had an MOS of 100 or less ... and all but two of these were DBPs



#### What is Science telling us about CECs?

To date, all studies lead to the same conclusion:

While we see trace organics in our potable water, it does not appear that they present an important health risk

# What is the public telling us about the CECs?

The interest the media continues to have in the trace organics tells us that the scientific argument has not overcome public concern:

Therefore, today's potable reuse strategy must maintain trace organics at levels at or below those in conventional drinking water supplies or it is unlikely to receive public support

## Conclusions

- Most critical public health threats from DPR depend on perspective:
  - Scientific view: pathogens
  - Public perception: CECs
- Potable reuse trains have evolved to provide excellent protection against pathogens and CECs
- DPR requires enhancing our successful existing practices
- On-going studies demonstrate we can do new forms of reuse safely and reliably

#### The CEC Issue is not exclusive to DPR!



Studies show that Both the CA State Water Project & the Colorado River have a WW Content on the order of 5%

• *De facto* potable reuse

- r wate
- Many most important chemicals have been a drinking water issue for last three decades

### Acknowledgements

- Rhodes Trussell
- Shane Trussell



## Thank you!

Brian Pecson <a href="mailto:briang@trusselltech.com">briang@trusselltech.com</a>

